• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A piezoelectric flexural plate wave (FPW) Bio-MEMS sensor with improved molecular mass detection for point-of-care diagnostics
 
  • Details
  • Full
Options
2019
Journal Article
Title

A piezoelectric flexural plate wave (FPW) Bio-MEMS sensor with improved molecular mass detection for point-of-care diagnostics

Abstract
The Respiratory Syncytial Virus (RSV) is responsible or a high rate of post-neonatal deaths. A fast and early diagnosis with accurate detection is vital for an effective treatment. Common diagnostics for the identification of unknown pathogens require large sample volumes and are time consuming. In this work, a piezoelectric flexural plate wave (FPW) Bio-MEMS sensor has been developed. The detection is based on the frequency shift of a FPW membrane due to binding of an additional mass depending on the applied functionalisation treatment. There are many acoustic sensors for molecular mass detection. However, the operating frequencies of sensors, such as shear horizontal surface acoustic wave (SH-SAW), surface transverse wave (STW) are usually larger than 100 MHz, which substantially complicates the readout electronics and increases the overall device costs. Only flexural plate wave (FPW) sensors have lower operating frequencies, allow for high mass sensitivity, and their phase velocity is less than the sound velocity in liquid, thus resulting only in minor energy dissipation into a testing liquid. A piezoelectric FPW-sensor with multiplexing capability has been developed for a point of care device in this work. The FPW-sensor consists of an electrode configuration termed as an interdigital transducer (IDT) placed on a membrane. An input IDT excites and an output IDT detects the propagating acoustic waves through a PZT layer. Design optimizations and fabrication improvements of the FPW sensor led to significantly reduced attenuation of the wave signal and the damping of the propagating waves between the IDTs. While a frequency shift of about 350 Hz was detected for design A, about 7 kHz can be measured with the improved sensor design B. Thus the resolution was significantly improved from 0.7 Hz/nM to 14 Hz/nM chemokine in complex solution.
Author(s)
Walk, Christian  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Wiemann, Matthias  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Görtz, Michael  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Weidenmüller, Jens
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Jupe, Andreas
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Seidl, Karsten
Uni DuE / EBS
Journal
Biomedizinische Technik  
Conference
German Society of Biomedical Engineering (Annual Meeting) 2019  
Open Access
DOI
10.1515/bmt-2019-6023
Additional link
Full text
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • flexural plate wave (FPW)

  • Bio-MEMS

  • point of care (POC)

  • multiplexing

  • respiratory syncytial virus (RSV)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024