• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Barrel instance segmentation and grasping for (semi-)autonomous excavators
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Barrel instance segmentation and grasping for (semi-)autonomous excavators

Abstract
During accidents involving hazardous chemicals, people in the area may be put at risk of harm. (Semi-)autonomous robots can mitigate this threat by removing leaking containers. However, teleoperation requires extensive training and is difficult in practice. To overcome these limitations, we implemented a perception system on an autonomous excavator that locates individual barrels in chaotic scenes for extraction. Following the human-in-the-loop principle, operators can remotely select which barrel to remove. An efficient U-Net-style, DCAN-flavored neural network is trained using synthetic and collected real-world RGB data (5,000 synthetic and 593 real images) and compared to an inference-heavy Mask R-CNN model. In experiments on a leave-out test set, created from the excavator, our model yielded an ODS mIoU of 85.14% and mAP of 72.19%, while Mask R-CNN achieved an ODS mIoU of 86.6% and mAP of 84.31%. With roughly 0.00584s inference time on 800×576 32-bit tensors, our model is faster than Mask R-CNN with an inference time of roughly 0.0491s. Using the robot calibration data, the point clouds of multiple LiDAR sensors are fused with the RGB segmentation to find local cylinder models for each barrel, delivering the exact poses for extraction using the motion planner to find a collision-free motion plan. Force measurements were included in the gripper to avoid deforming the barrel. Field trials showed that the barrels can be reliably extracted without any damage.
Author(s)
Jordan, Florian  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Frese, Christian  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Baum, Winfried  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Ruf, Boitumelo  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Albrecht, Alexander  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Emter, Thomas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Huber, Marco F.  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
Seventeenth International Conference on Machine Vision (ICMV 2024)  
Conference
International Conference on Machine Vision 2024  
DOI
10.1117/12.3055172
10.24406/h-485331
File(s)
ICMV_AKIT_Pro_Instance_Segmentation.pdf (16.72 MB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • instance segmentation

  • autonomous grasping

  • human-in-the-loop

  • supervised autonomy

  • disaster management

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024