• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Iterative Imputation of Incomplete Wireless Network Traffic using Adversarial Learning and a Two-Stage Approach
 
  • Details
  • Full
Options
July 2, 2024
Conference Paper
Title

Iterative Imputation of Incomplete Wireless Network Traffic using Adversarial Learning and a Two-Stage Approach

Abstract
In modern industries, wireless communication technologies are the driver of flexible information transfer. To meet certain communication requirements like reliability, low latency and a specific data rate, constant monitoring and analysis of the captured data is necessary. Passive monitoring is a technique for tracking the communication between devices on link-level. Under certain conditions, the monitoring device loses information (data packets) from time to time. To avoid erroneous data analysis results, incomplete traces have to be reconstructed by imputation. In the present work, we propose a deep learning based imputation approach, using the concept of Generative Adversarial Networks (GANs). For our experiments we created a simulated data set using ns-3. The proposed model could outperform the selected baseline methods. We further improved the result by implementing a second stage of imputation based on the Expectation Maximization (EM) algorithm.
Author(s)
Richter, Anna
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Ijaradar, Jyotirmaya
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Wetzker, Ulf  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
3rd International Conference on Artificial Intelligence for Internet of Things, AIIoT 2024  
Project(s)
Cognitive and Automated Network Operations for Present and Beyond; Teilvorhaben: Anforderungsanalyse, Datenanalyse und Simulation für die KI-basierte Zustandsanalyse und -Vorhersage in 5G-Netzwerken  
Funder
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
Conference
International Conference on Artificial Intelligence for Internet of Things 2024  
DOI
10.1109/AIIoT58432.2024.10574538
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024