• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Machine learning for per-title encoding
 
  • Details
  • Full
Options
2022
Journal Article
Title

Machine learning for per-title encoding

Abstract
Video streaming content varies in terms of complexity and requires title-specific encoding settings to achieve a certain visual quality. Classic 'one-size-fits-all' encoding ladders ignore video-specific characteristics and apply the same encoding settings across all video files. In the worst-case scenario, this approach can lead to quality impairments, encoding artifacts, or unnecessarily large media files. A per-title encoding solution has the potential to significantly decrease the storage and delivery costs of video streams while improving the perceptual quality of the video. Conventional per-title encoding solutions typically require a large number of test encodes, resulting in high computational times and costs. In this article, we describe a solution that implements the conventional per-title encoding approach and uses its resulting data for machine learning-based improvements. By applying supervised, multivariate regression algorithms like random forest regression, multilayer perceptron (MLP), and support vector regression, we can predict video quality metric (VMAF) values. These video quality metric values are the foundation for deriving the optimal encoding ladder. As a result, the test encodes are eliminated while preserving the benefits of conventional per-title encoding.
Author(s)
Silhavy, Daniel  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Chen, Anita
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Krauss, Christopher  orcid-logo
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Nguyen, Anh Tu
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Müller, Christoph
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Arbanowski, Stefan  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Steglich, Stephan  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Bassbouss, Louay  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Journal
SMPTE motion imaging journal  
DOI
10.5594/JMI.2022.3154836
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • adaptive bitrate streaming

  • machine learning

  • per-title encoding

  • video multi-method assessment fusion (VMAF)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024