Options
2018
Journal Article
Title
On the convergence of system-AMG in reservoir simulation
Abstract
System-algebraic multigrid (AMG) provides a flexible framework for linear systems in simulation applications that involve various types of physical unknowns. Reservoir-simulation applications, with their driving elliptic pressure unknown, are principally well-suited to exploit System-AMG as a robust and efficient solver method. However, the coarse grid correction must be physically meaningful to speed up the overall convergence. It has been common practice in constrained-pressure-residual (CPR) -type applications to use an approximate pressure/saturation decoupling to fulfill this requirement. Unfortunately, this can have significant effects on the AMG applicability and, thus, is not performed by the dynamic rowsum (DRS) method. This work shows that the pressure/saturation decoupling is not necessary for ensuring an efficient interplay between the coarse grid correction process and the fine-level problem, demonstrating that a comparable influence of the pressure on the different involved partial-differential equations (PDEs) is much more crucial. As an extreme case with respect to the outlined requirement, linear systems from compositional simulations under the volume-balance formulation will be discussed. In these systems, the pressure typically is associated with a volume balance rather than a diffusion process. It will be shown how System-AMG can still be used in such cases.