• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Computational methodology to predict satellite system-level effects from impacts of untrackable space debris
 
  • Details
  • Full
Options
2013
Journal Article
Titel

Computational methodology to predict satellite system-level effects from impacts of untrackable space debris

Abstract
This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.
Author(s)
Welty, N.
Rudolph, M.
Schäfer, F.
Apeldoorn, J.
Janovsky, R.
Zeitschrift
Acta astronautica
Thumbnail Image
DOI
10.1016/j.actaastro.2013.01.021
Language
English
google-scholar
Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach-Institut EMI
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022