• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Learning sparse ternary neural networks with Entropy-Constrained Trained Ternarization (EC2T)
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Learning sparse ternary neural networks with Entropy-Constrained Trained Ternarization (EC2T)

Abstract
Deep neural networks (DNN) have shown remarkable success in a variety of machine learning applications. The capacity of these models (i.e., number of parameters), endows them with expressive power and allows them to reach the desired performance. In recent years, there is an increasing interest in deploying DNNs to resource- constrained devices (i.e., mobile devices) with limited energy, memory, and computational budget. To address this problem, we propose Entropy-Constrained Trained Ternarization (EC2T), a general framework to create sparse and ternary neural networks which are efficient in terms of storage (e.g., at most two binary-masks and two full-precision values are required to save a weight matrix) and computation (e.g., MAC operations are reduced to a few accumulations plus two multiplications). This approach consists of two steps. First, a super-network is created by scaling the dimensions of a pre-trained model (i.e., its width and depth). Subsequently, this super-network is simultaneously pruned (using an entropy constraint) and quantized (that is, ternary values are assigned layer-wise) in a training process, resulting in a sparse and ternary network representation. We validate the proposed approach in CIFAR-10, CIFAR-100, and ImageNet datasets, showing its effectiveness in image classification tasks.
Author(s)
Marban, A.
Becking, D.
Wiedemann, S.
Samek, W.
Mainwork
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020. Proceedings  
Conference
Conference on Computer Vision and Pattern Recognition (CVPR) 2020  
Open Access
DOI
10.1109/CVPRW50498.2020.00369
Additional link
Full text
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024