• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Designing distributed decision-making authorities for smart factories - understanding the role of manufacturing network architecture
 
  • Details
  • Full
Options
June 7, 2023
Journal Article
Title

Designing distributed decision-making authorities for smart factories - understanding the role of manufacturing network architecture

Abstract
The availability of cyber-physical systems (CPS) in modern manufacturing networks provides a multitude of interesting opportunities from a manufacturing control perspective. Providing sensors, data gathering, local computation and communication capabilities modern CPS fulfil the technical requirements to act completely autonomously in a manufacturing network. While the distribution of decision-making authority to autonomous entities is feasible given such requirements, practice often sees the monopolisation of decision-making authority for centralised control. However, distributed production control approaches might be better suited given current manufacturing challenges, ranging from unreliable supply chains over highly volatile markets, to the demand for increasingly efficient and highly customisable production. In this article, we extend an existing scheduling complexity framework which enables practitioners and researchers alike to assess the aptitude of given manufacturing networks for both centralised and distributed control. In particular, we study the influence of a manufacturing network's topology ranging from assembly line to job shops on the aforementioned aptitude, with total production costs as objective.
We utilise a multi-agent-based discrete-event simulation comparing an MILP-based centralised control approach and an autonomy based distributed control approach with weighted costs as decision function to evaluate this framework. Our results provide novel insights regarding the influence of manufacturing network topologies on the scheduling complexity of manufacturing networks.
Author(s)
Antons, Oliver  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Arlinghaus, Julia  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Journal
International Journal of Production Research  
DOI
10.1080/00207543.2023.2217285
Language
English
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024