• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Ab initio derived force-field parameters for molecular dynamics simulations of deprotonated amorphous-SiO 2/water interfaces
 
  • Details
  • Full
Options
2012
Journal Article
Title

Ab initio derived force-field parameters for molecular dynamics simulations of deprotonated amorphous-SiO 2/water interfaces

Abstract
We present a set of Coulomb point charges and van der Waals parameters for molecular dynamics simulations of interfaces between natively deprotonated amorphous SiO 2 surfaces and liquid water, to be used in combination with standard biomolecular force fields. We pay particular attention to the extent of negative charge delocalisation in the solid that follows the deprotonation of terminal silanol groups, as revealed by extensive Bader analysis of electronic densities computed by density functional theory (DFT). The absolute charge values in our force field are determined from best-fitting to the electrostatic potential computed ab initio (ESP charges). Our proposed parameter set is found to reproduce the energy landscape of single water molecules over neutral and deprotonated amorphous SiO 2 surfaces and, after a minor adjustment, over thin oxide films on Si. Our analysis reveals a certain degree of arbitrariness in the choice of the DFT scheme used as the reference for the force-field optimisation procedure, highlighting its intrinsic limits.
Author(s)
Butenuth, A.
Moras, G.
Schneider, J.
Koleini, M.
Köppen, S.
Meißner, R.
Wright, L.B.
Walsh, T.R.
Ciacchi, L.C.
Journal
Physica status solidi. B  
Project(s)
ADGLASS  
Funder
European Commission EC  
Deutsche Forschungsgemeinschaft DFG  
DOI
10.24406/publica-r-228564
10.1002/pssb.201100786
File(s)
N-206935.pdf (2.34 MB)
Language
English
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM  
Fraunhofer-Institut für Werkstoffmechanik IWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024