Options
2025
Conference Paper
Title
Unsupervised Thematic Context Discovery for Explainable AI in Fact Verification: Advancing the CARAG Framework
Abstract
This paper introduces CARAG-u, an unsupervised extension of the Context-Aware Retrieval Augmented Generation (CARAG) framework, designed to advance explainability in Automated Fact Verification (AFV) architectures. Unlike its predecessor, CARAG-u eliminates reliance on predefined thematic annotations and claim-evidence pair labels, by dynamically deriving thematic clusters and evidence pools from unstructured datasets. This innovation enables CARAG-u to balance local and global perspectives in evidence retrieval and explanation generation. We benchmark CARAG-u against Retrieval Augmented Generation (RAG) and compare it with CARAG, highlighting its unsupervised adaptability while maintaining a competitive performance. Evaluations on the FactVer dataset demonstrate CARAG-u's ability to generate thematically coherent and context-sensitive post-hoc explanations, advancing Explainable AI in AFV. The implementation of CARAGu, including all dependencies, is publicly available to ensure reproducibility and support further research.
Author(s)
Conference
Open Access
File(s)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
Additional link
Language
English