• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints
 
  • Details
  • Full
Options
2021
Journal Article
Title

Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints

Abstract
Federated learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit its popularity, it has been observed that FL yields suboptimal results if the local clients' data distributions diverge. To address this issue, we present clustered FL (CFL), a novel federated multitask learning (FMTL) framework, which exploits geometric properties of the FL loss surface to group the client population into clusters with jointly trainable data distributions. In contrast to existing FMTL approaches, CFL does not require any modifications to the FL communication protocol to be made, is applicable to general nonconvex objectives (in particular, deep neural networks), does not require the number of clusters to be known a priori , and comes with strong mathematical guarantees on the clustering quality. CFL is flexible enough to handle client populations that vary over time and can be implemented in a privacy-preserving way. As clustering is only performed after FL has converged to a stationary point, CFL can be viewed as a postprocessing method that will always achieve greater or equal performance than conventional FL by allowing clients to arrive at more specialized models. We verify our theoretical analysis in experiments with deep convolutional and recurrent neural networks on commonly used FL data sets.
Author(s)
Sattler, F.
Müller, K.-R.
Samek, W.
Journal
IEEE transactions on neural networks and learning systems  
Open Access
DOI
10.1109/TNNLS.2020.3015958
Additional link
Full text
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024