• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Generative Machine Learning for Resource-Aware 5G and IoT Systems
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Generative Machine Learning for Resource-Aware 5G and IoT Systems

Abstract
Extrapolations predict that the sheer number of Internet-of-Things (IoT) devices will exceed 40 billion in the next five years. Hand-crafting specialized energy models and monitoring sub-systems for each type of device is error prone, costly, and sometimes infeasible. In order to detect abnormal or faulty behavior as well as inefficient resource usage autonomously, it is of tremendous importance to endow upcoming IoT and 5G devices with sufficient intelligence to deduce an energy model from their own resource usage data. Such models can in-turn be applied to predict upcoming resource consumption and to detect system behavior that deviates from normal states. To this end, we investigate a special class of undirected probabilistic graphical model, the so-called integer Markov random fields (IntMRF). On the one hand, this model learns a full generative probability distribution over all possible states of the system-allowing us to predict system states and to measure the probability of observed states. On the other hand, IntMRFs are themselves designed to consume as less resources as possible-e.g., faithful modelling of systems with an exponentially large number of states, by using only 8-bit unsigned integer arithmetic and less than 16KB memory. We explain how IntMRFs can be applied to model the resource consumption and the system behavior of an IoT device and a 5G core network component, both under various workloads. Our results suggest, that the machine learning model can represent important characteristics of our two test systems and deliver reasonable predictions of the power consumption.
Author(s)
Piatkowski, Nico  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mueller-Roemer, Johannes Sebastian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Hasse, Peter  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Bachorek, Adam  
Fraunhofer-Institut für Experimentelles Software Engineering IESE  
Werner, Tim  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Birnstill, Pascal  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Morgenstern, Andreas  
Fraunhofer-Institut für Experimentelles Software Engineering IESE  
Stobbe, Lutz  
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
Mainwork
IEEE International Conference on Communications Workshops (ICC Workshops) 2021. Proceedings  
Project(s)
TRAICT
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Conference on Communications (ICC) 2021  
Open Access
DOI
10.1109/ICCWorkshops50388.2021.9473625
File(s)
N-638015.pdf (4.23 MB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Experimentelles Software Engineering IESE  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
Keyword(s)
  • Lead Topic: Digitized Work

  • Research Line: Machine Learning (ML)

  • Machine learning

  • Energy efficiency

  • Communication services and networks

  • generative model

  • probabilistic graphical model

  • Internet of Things

  • 5G core

  • energy model

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024