Options
2021
Conference Paper
Titel
Precision finishing of additively manufactured components using the immersed tumbling process
Abstract
Additive manufacturing enables the production of highly complex metallic components with highest geometrical flexibility in dedicated lightweight construction. For titanium-aluminium alloys, which are used in particular in the aviation industry, powder bed based processes such as the laser powder bed fusion are established. Nevertheless, laser powder bed fusion is limited with regard to the producible surface roughness in a range of 5 µm ⤠Ra ⤠15 µm. According to the state of the art, the increase of the geometrical accuracy and the reduction of the surface roughness values of the additive manufactured components are realised by different cutting and non-conventional processes. In this investigation, a new approach for the reduction of the surface roughness values by immersed tumbling was realised. Therefore, additively manufactured square bars made of the titanium alloy Ti-5Al-5Mo-5V-3Cr were used as sample geometries. An immersed tumbling machine tool with plan etary kinematics for post-processing was applied and the lapping media QZ, HSC 1/500 and M5/400 were evaluated. In addition, the influence of the rotor speed and the holder as well as the depth of immersion were considered as influencing factors. As target values the surface roughness values as well as the rounded edge radius were examined. Within this investigations the surface roughness values could be reduced by more than 90 %. In addition, a targeted rounding of the edges could be obtained, which removed the excess edge height at the part resulting from the laser powder bed fusion process. As a result the immersed tumbling process shows a great suitability as a finishing process for additively manufactured components and is particularly suitable for automated and serial finishing processes.