• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Limitations of Anomaly Detection: Beyond which Size Defects can be Reliably Recognized
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Limitations of Anomaly Detection: Beyond which Size Defects can be Reliably Recognized

Abstract
Anomaly detection is one of the most popular fields for computer vision in industrial applications. The idea of training machine learning only on defect-free objects saves enormous amounts of integration effort. The state of the art shows that current methods on public data sets (e.g. MVTec AD data set) have already solved the problem with AUROC segementations scores of more than 99 %. But how accurate are these methods really? In this paper, one current method from the field of supervised learning and anomaly detection is evaluated on two problems. Each problem contains a defect pattern that grows in 11 steps. This work shows that the defect is already reliably detected from a relative size of 0.03 % of the pixels in the image.
Author(s)
Lehr, Jan  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Pape, Martin
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Philipps, Jan
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Scholler, Felix
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Krüger, Jörg
Mainwork
Sixteenth International Conference on Machine Vision, ICMV 2023  
Conference
International Conference on Machine Vision 2023  
DOI
10.1117/12.3023615
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Keyword(s)
  • anomaly detection

  • automated optical inspection

  • defect recognition

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024