• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Behavior of Decision Forest Classification in Dynamic Manufacturing Systems
 
  • Details
  • Full
Options
2021
Journal Article
Title

Behavior of Decision Forest Classification in Dynamic Manufacturing Systems

Abstract
Managers of manufacturing systems are constantly looking for ways to predict future production conditions. Due to the system's complexity, modelling is effortful and never completed. So-called random forests of decision trees seem to be a promising machine-learning tool to forecast key figures of manufacturing systems. The selection of data to teach such classifiers significantly influences the quality of the prediction. However, quality of data and prediction decreases in case of a dynamic system. This paper deals with one possible way of data handling for decision forests in changing manufacturing system.
Author(s)
Böhm, Markus  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Bauernhansl, Thomas  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Jeschke, Sabina
Deutsche Bahn AG
Journal
Procedia CIRP  
Conference
Conference on Manufacturing Systems (CMS) 2021  
Open Access
DOI
10.1016/j.procir.2021.11.088
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Klassifikation

  • Entscheidungsbaum

  • Produktionsdatenerfassung

  • Prognose

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024