• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
 
  • Details
  • Full
Options
June 18, 2022
Book Article
Title

Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety

Abstract
Deployment of modern data-driven machine learning methods, most often realized by deep neural networks (DNNs), in safety-critical applications such as health care, industrial plant control, or autonomous driving is highly challenging due to numerous model-inherent shortcomings. These shortcomings are diverse and range from a lack of generalization over insufficient interpretability and implausible predictions to directed attacks by means of malicious inputs. Cyber-physical systems employing DNNs are therefore likely to suffer from so-called safety concerns, properties that preclude their deployment as no argument or experimental setup can help to assess the remaining risk. In recent years, an abundance of state-of-the-art techniques aiming to address these safety concerns has emerged. This chapter provides a structured and broad overview of them. We first identify categories of insufficiencies to then describe research activities aiming at their detection, quantification, or mitigation. Our work addresses machine learning experts and safety engineers alike: The former ones might profit from the broad range of machine learning topics covered and discussions on limitations of recent methods. The latter ones might gain insights into the specifics of modern machine learning methods. We hope that this contribution fuels discussions on desiderata for machine learning systems and strategies on how to help to advance existing approaches accordingly.
Author(s)
Houben, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Albrecht, Stefanie
Robert Bosch GmbH
Akila, Maram  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bär, Andreas
Brockherde, Felix
Feifel, Patrick
Fingscheidt, Tim
Gannamaneni, Sujan Sai  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ghobadi, Seyed Eghbal
Hammam, Ahmed
Haselhoff, Anselm
Hauser, Felix
Heinzemann, Christian
Hoffmann, Marco
Kapoor, Nikhil
Kappel, Falk
Klingner, Marvin
Kronenberger, Jan
Küppers, Fabian
Löhdefink, Jonas
Mlynarski, Michael
Mock, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mualla, Firas
Pavlitskaya, Svetlana
Poretschkin, Maximilian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pohl, Alexander
Ravi-Kumar, Varun
Rosenzweig, Julia  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Rottmann, Matthias
Rüping, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sämann, Timo
Schneider, Jan David
Schulz, Elena
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schwalbe, Gesina
Sicking, Joachim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Srivastava, Toshika
Varghese, Serin
Weber, Michael
Wirkert, Sebastian
Wirtz, Tim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Woehrle, Matthias
Mainwork
Deep Neural Networks and Data for Automated Driving  
Project(s)
Methoden und Maßnahmen zur Absicherung von KI-basierten Wahrnehmungsfunktionen für das automatisierte Fahren
Funder
Bundesministerium für Wirtschaft und Klimaschutz
Open Access
DOI
10.1007/978-3-031-01233-4_1
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024