• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Artery segmentation and atherosclerotic plaque quantification using AI for murine whole slide images stained with oil red O
 
  • Details
  • Full
Options
2025
Journal Article
Title

Artery segmentation and atherosclerotic plaque quantification using AI for murine whole slide images stained with oil red O

Abstract
Atherosclerosis is the leading cause of death in Western industrial nations. To study the etiology of plaque progression, atherosclerotic mouse models are widely used. Traditionally, analyzing the obtained histological whole slide images of Oil Red O-stained aortic roots required manual segmentation. To accelerate this process, an artificial intelligence-driven solution is proposed that comprises three stages: (1) defining the region of interest (ROI) of the aortic root using a YOLOv8l object detector, (2) applying supervised machine learning with ensembles of U-Net++ networks for artery segmentation using ROI masks, and (3) performing plaque segmentation within arterial walls with the unsupervised W-Net method. To establish a robust segmentation pipeline, we benchmark our methods using manually created masks (for artery segmentation, for plaque segmentation). A key finding is that an ensemble of U-Net++ networks applied on ROI masks outperformed single network architectures. Through a novel combination strategy, the ensemble output can be easily modified, paving the way for a quick and robust application in the lab. Finally, a case study utilizing published mouse data (slices) underscored the ability of our optimized pipeline to replicate human-made plaque predictions with a high correlation (Pearson’s) and reproduce biological insights derived from manual analysis.
Author(s)
Engster, Johann Christopher  
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Reinberger, Tobias
Universität zu Lübeck
Blum, Nele
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Stagge, Pascal
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Buzug, Thorsten
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Aherrahrou, Zouhair
Universität zu Lübeck
Stille, Maik  orcid-logo
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Journal
Scientific Reports  
Open Access
DOI
10.1038/s41598-025-93967-6
Additional link
Full text
Language
English
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Keyword(s)
  • Artery segmentation

  • Ensemble

  • Machine learning

  • Oil red O

  • Plaque segmentation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024