• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Archetypical motion: Supervised game behavior learning with Archetypal Analysis
 
  • Details
  • Full
Options
2013
Conference Paper
Title

Archetypical motion: Supervised game behavior learning with Archetypal Analysis

Abstract
The problem of creating believable game AI poses numerous challenges for computational intelligence research. A particular challenge consists in creating human-like behaving game bots by means of applying machine learning to game-play data recorded by human players. In this paper, we propose a novel, biologically inspired approach to behavior learning for video games. Our model is based on the idea of movement primitives and we use Archetypal Analysis to determine elementary movements from data in order to represent any player action in terms of convex combinations of archetypal motions. Given these representations, we use supervised learning in order to create a system that is able to synthesize appropriate motion behavior during a game. We apply our model to teach a first person shooter game bot how to navigate in a game environment. Our results indicate that the model is able to simulate human-like behavior at lower computational costs than previous approaches.
Author(s)
Sifa, Rafet  
Bauckhage, Christian  
Mainwork
IEEE Conference on Computational Intelligence and Games, CIG 2013  
Conference
Conference on Computational Intelligence and Games (CIG) 2013  
DOI
10.1109/CIG.2013.6633609
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024