• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Pixel-Level Face Image Quality Assessment for Explainable Face Recognition
 
  • Details
  • Full
Options
2023
Journal Article
Title

Pixel-Level Face Image Quality Assessment for Explainable Face Recognition

Abstract
In this work, we introduce the concept of pixel-level face image quality that determines the utility of single pixels in a face image for recognition. We propose a training-free approach to assess the pixel-level qualities of a face image given an arbitrary face recognition network. To achieve this, a model-specific quality value of the input image is estimated and used to build a sample-specific quality regression model. Based on this model, quality-based gradients are back-propagated and converted into pixel-level quality estimates. In the experiments, we qualitatively and quantitatively investigated the meaningfulness of our proposed pixel-level qualities based on real and artificial disturbances and by comparing the explanation maps on faces incompliant with the ICAO standards. In all scenarios, the results demonstrate that the proposed solution produces meaningful pixel-level qualities enhancing the interpretability of the face image and its quality. The code is publicly available.
Author(s)
Terhörst, Philipp  
Norwegian University of Science and Technology  
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Raja, Kiran
Norwegian University of Science and Technology  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
IEEE transactions on biometrics, behavior, and identity science  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst
Open Access
DOI
10.1109/TBIOM.2023.3263186
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Face recognition

  • Quality estimation

  • Deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024