Options
2023
Conference Paper
Title
Increasing the reuse of wood in bulky waste using artificial intelligence and imaging in the VIS, IR, and terahertz ranges
Abstract
Bulky waste contains valuable raw materials, especially wood, which accounts for around 50% of the volume. Sorting is very time-consuming in view of the volume and variety of bulky waste and is often still done manually. Therefore, only about half of the available wood is used as a material, while the rest is burned with unsorted waste. In order to improve the material recycling of wood from bulky waste, the project ASKIVIT aims to develop a solution for the automated sorting of bulky waste. For that, a multi-sensor approach is proposed including: (i) Conventional imaging in the visible spectral range; (ii) Nearinfrared hyperspectral imaging; (iii) Active heat flow thermography; (iv) Terahertz imaging. This paper presents a demonstrator used to obtain images with the aforementioned sensors. Differences between the imaging systems are discussed and promising results on common problems like painted materials or black plastic are presented. Besides that, pre-examinations show the importance of near-infrared hyperspectral imaging for the characterization of bulky waste.
Author(s)
Open Access
Rights
CC BY 4.0: Creative Commons Attribution
Language
English