• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Federated Learning in Dentistry: Chances and Challenges
 
  • Details
  • Full
Options
2022
Journal Article
Title

Federated Learning in Dentistry: Chances and Challenges

Abstract
Building performant and robust artificial intelligence (AI)–based applications for dentistry requires large and high-quality data sets, which usually reside in distributed data silos from multiple sources (e.g., different clinical institutes). Collaborative efforts are limited as privacy constraints forbid direct sharing across the borders of these data silos. Federated learning is a scalable and privacy-preserving framework for collaborative training of AI models without data sharing, where instead the knowledge is exchanged in form of wisdom learned from the data. This article aims at introducing the established concept of federated learning together with chances and challenges to foster collaboration on AI-based applications within the dental research community.
Author(s)
Rischke, Roman
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Schneider, L.
Charité – Universitätsmedizin Berlin
Müller, K.
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Schwendicke, F.
Charité – Universitätsmedizin Berlin
Krois, J.
Charité – Universitätsmedizin Berlin
Journal
Journal of dental research  
Open Access
DOI
10.1177/00220345221108953
Additional link
Full text
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keyword(s)
  • artificial intelligence

  • computer vision/convolutional neural networks

  • deep learning/machine learning

  • privacy

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024