• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Decoupling Autoencoders for Robust One-vs-Rest Classification
 
  • Details
  • Full
Options
October 20, 2021
Conference Paper
Title

Decoupling Autoencoders for Robust One-vs-Rest Classification

Abstract
One-vs-Rest (OVR) classification aims to distinguish a single class of interest from other classes. The concept of novelty detection and robustness to dataset shift becomes crucial in OVR when the scope of the rest class extends from the classes observed during training to unseen and possibly unrelated classes. In this work, we propose a novel architecture, namely Decoupling Autoencoder (DAE) to tackle the common issue of robustness w.r.t. out-of-distribution samples which is prevalent in classifiers such as multi-layer perceptrons (MLP) and ensemble architectures. Experiments on plain classification, outlier detection, and dataset shift tasks show DAE to achieve robust performance across these tasks compared to the baselines, which tend to fail completely, when exposed to dataset shift. W hile DAE and the baselines yield rather uncalibrated predictions on the outlier detection and dataset shift task, we found that DAE calibration is more stable across all tasks. Therefore, calibration measures applied to the classification task could also improve the calibration of the outlier detection and dataset shift scenarios for DAE.
Author(s)
Lübbering, Max  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Gebauer, Michael
TU Berlin
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA 2021)  
Conference
International Conference on Data Science and Advanced Analytics (DSAA) 2021  
DOI
10.1109/DSAA53316.2021.9564136
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Training

  • Deep learning

  • Data science

  • Feature extraction

  • Robustness

  • Calibration

  • Risk management

  • One vs Rest Classification

  • Outlier Detection

  • Dataset Shift

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024