• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Toward Explainable Artificial Intelligence for Regression Models
 
  • Details
  • Full
Options
2022
Journal Article
Title

Toward Explainable Artificial Intelligence for Regression Models

Title Supplement
A methodological perspective
Abstract
In addition to the impressive predictive power of machine learning (ML) models, more recently, explanation methods have emerged that enable an interpretation of complex nonlinear learning models, such as deep neural networks. Gaining a better understanding is especially important, e.g., for safety-critical ML applications or medical diagnostics and so on. Although such explainable artificial intelligence (XAI) techniques have reached significant popularity for classifiers, thus far, little attention has been devoted to XAI for regression models (XAIR). In this review, we clarify the fundamental conceptual differences of XAI for regression and classification tasks, establish novel theoretical insights and analysis for XAIR, provide demonstrations of XAIR on genuine practical regression problems, and finally, discuss challenges remaining for the field.
Author(s)
Letzgus, S.
Technische Universität Berlin
Wagner, P.
Technische Universität Berlin
Lederer, J.
Technische Universität Berlin
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Müller, K.R.
Technische Universität Berlin
Montavon, G.
Berlin Institute for the Foundations of Learning and Data
Journal
IEEE Signal Processing Magazine  
DOI
10.1109/MSP.2022.3153277
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024