• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Motion sensing: From single sensors to sensor networks
 
  • Details
  • Full
Options
2011
Book Article
Title

Motion sensing: From single sensors to sensor networks

Abstract
It is well known, that regular physical activity is an important factor for preserving the health status, the challenge is how to quantify it accurately. Similarly rehabilitation programs rely on physical exercises, where the best results can be achieved through daily training. But who monitors and evaluates exercise execution at home? Micro electro mechanical systems (MEMS) based accelerometers provide a technological solution for inexpensive monitoring systems. The required number of accelerometers within the monitoring system depends on the use case. Quantifying certain activities like walking or cycling can be achieved with only one sensor, while recognizing differences in movements requires more observations and thus a network of accelerometers. We present some typical movement related applications. For these use cases single sensor and multi-sensor systems are compared with respect to their advantages, challenges and limitations. Even signal processing requirements differ from application to application. Two approaches are explained in detail: knowledge-based and model-driven algorithms. While knowledge-based algorithms rely on feature extraction and an inference machine, which infers high level information from these features, model-driven algorithms try to describe relations between collected data and movements.
Author(s)
Rulsch, Martin
Arzt, Christian
Feilner, Sven
Jablonski, Simon
Struck, Matthias  
Zhong, Jinghua
Tantinger, Daniel
Hofmann, Christian  
Weigand, Christian  
Mainwork
Microelectronic systems. Circuits, systems and applications  
DOI
10.1007/978-3-642-23071-4_18
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024