• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Correcting Systematic Bias in LLM-Generated Dialogues Using Big Five Personality Traits
 
  • Details
  • Full
Options
December 15, 2024
Conference Paper
Title

Correcting Systematic Bias in LLM-Generated Dialogues Using Big Five Personality Traits

Abstract
The ability of large language models (LLMs) to simulate human behavior and psychological traits holds significant promise for applications in psychology and the social sciences. This paper investigates the feasibility of generating synthetic dialogue datasets that accurately reflect real-world distributions of personality traits, based on the Big Five personality model. Using GPT-4o-mini, we prompt the model with personality traits that mirror population-level distributions to generate dialogues. However, systematic deviations, particularly in the representation of extreme personality traits, are observed - likely due to biases introduced during LLM training and alignment. To address these deviations, we propose a rescaling method that corrects the initial personality traits used for prompting the LLM, ensuring that the generated dialogues more closely match the expected distributions. This correction enhances the quality and reliability of the synthetic dialogues, paving the way for more effective use of LLMs in psychological research and social science applications.
Author(s)
Sparrenberg, Lorenz
University of Bonn
Schneider, Tobias
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Koppenborg, Markus
University of Cologne
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE International Conference on Big Data 2024. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Big Data 2024  
DOI
10.1109/BigData62323.2024.10825941
10.24406/publica-4565
File(s)
publica_Big5LLM.pdf (6.96 MB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Large language models

  • big five

  • synthetic data

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024