• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Root cause analysis using anomaly detection and temporal informed causal graphs
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Root cause analysis using anomaly detection and temporal informed causal graphs

Abstract
In industrial processes, anomalies in the production equipment may lead to expensive failures. To avoid and avert such failures, the identification of the right root cause is crucial. Ideally, the search for a root cause is backed by causal information such as causal graphs. We have extended a framework that fuses causal graphs with anomaly detection to infer likely root causes. In this work, we add the use of temporal information to draw temporal valid conclusions about the potential propagation of anomalous information in causal graphs. The use of the framework is demonstrated on a robotic gripping process.
Author(s)
Rehak, Josephine  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Youssef, Shahenda
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
ML4CPS 2024 - Machine Learning for Cyber-Physical Systems  
Conference
Machine Learning for Cyber Physical Systems Conference 2024  
Open Access
File(s)
Download (1.64 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24405/15308
10.24406/publica-3069
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Causal Graph

  • Anomaly Detection

  • Multivariate Timeseries

  • Root Cause Analysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024