• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Conceptual framework for biodiversity assessments in global value chains
 
  • Details
  • Full
Options
2019
Journal Article
Title

Conceptual framework for biodiversity assessments in global value chains

Abstract
Land use and land use change are among the main drivers of the ongoing loss of biodiversity at a global-scale. Although there are already Life Cycle Impact Assessment (LCIA) methods to measure this impact, they are still rarely used by companies and municipalities in the life cycle assessment of products and processes. Therefore, this paper highlights four main requirements for a biodiversity methodological framework within LCIA in order to facilitate biodiversity assessments: first, to consider the global uneven distribution of biodiversity and its risks with respect to vulnerability and irreplaceability; second, to account for the need to regionalize the impacts of land use; third, to consider the specific impacts that different land use types have on biodiversity; and fourth, to analyze the biodiversity impacts of different land use management parameters and their influence on the intensity of land use. To this end, we provided a review of existing methods in respect to conformity and research gaps. The present publication describes the development of a new methodological framework that builds on these requirements in a three-level hierarchical framework, which enables the assessment of biodiversity in LCA at a global-scale. This publication reveals research gaps regarding the inclusion of proactive and reactive conservation concepts as well as methods of land management into LCIA methodology. The main objective oft his concept paper is therefore to describe a new methodological framework for the assessment of biodiversity in the LCA that could fill some of the research gaps, including compilation and suggestion of suitable data sets. The conclusion discusses both the benefits and limitations of this framework.
Author(s)
Maier, Stephanie  
Fraunhofer-Institut für Bauphysik IBP  
Lindner, Jan Paul
Univ. Stuttgart; Univ. Bochum, Dep. of Mechatronics and Mechanical Eng.
Francisco, Javier
Univ. Erfurt, Max-Weber-Kolleg
Journal
Sustainability  
Open Access
DOI
10.3390/su11071841
Additional link
Full text
Language
English
Fraunhofer-Institut für Bauphysik IBP  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024