• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. FMUGym: An Interface for Reinforcement Learning-based Control of Functional Mock-up Units under Uncertainties
 
  • Details
  • Full
Options
July 2024
Conference Paper
Title

FMUGym: An Interface for Reinforcement Learning-based Control of Functional Mock-up Units under Uncertainties

Abstract
Uncertainties complicate the task of designing optimal controllers for complex systems. This work introduces FMUGym, a novel open source interface that connects reinforcement learning libraries following the Gymnasium standard with co-simulation Functional Mock-up Units. As the latter encapsulate the model of the control plant, FMUGym can transform them into an environment of a reinforcement learning setup. FMUGym allows to inject uncertainties into system dynamics, inputs and outputs during training. This fosters robust control policies that adapt to possible variations and aims to bridge the simulation-to-reality gap. We demonstrate FMUGym's effectiveness by training an agent to control a nonlinear system with and without uncertainties, highlighting the benefit of noise injection. A second example showcases applicability in heating, ventilation and air conditioning systems. The source code and additional resources for this project are available on GitHub (https://github.com/Fraunhofer-IIS/fmugym), with further development planned based on community feedback.
Author(s)
Wrede, Konstantin  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Huang, Chenzi  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Wohlfahrt, Tommy  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Hartmann, Nick
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
31st International Workshop on Intelligent Computing in Engineering, EG-ICE 2024  
Project(s)
Monitoring / Optimierung von Heizungsanlagen über Web-Schnittstellen (Shango); Teilvorhaben: Fehlersimulation und KI  
Funder
Bundesministerium für Wirtschaft und Klimaschutz  
Conference
International Workshop on Intelligent Computing in Engineering 2024  
File(s)
Download (1.17 MB)
Rights
Use according to copyright law
DOI
10.24406/publica-4387
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Functional Mock-up Units

  • Reinforcement Learning

  • Machine Learning

  • Modelica

  • Simulation

  • Uncertainties

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024