• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis

Abstract
Polycyclic aromatic hydrocarbons (PAH) containing tar-mixtures pose a challenge for recycling road rubble, as the tar containing elements have to be extracted and decontaminated for recycling. In this preliminary study, tar, bitumen and minerals are discriminated using a combination of color (RGB) and Hyperspectral Short Wave Infrared (SWIR) cameras. Further, the use of an autoencoder for detecting minerals embedded inside tar- and bitumen mixtures is proposed. Features are extracted from the spectra of the SWIR camera and the texture of the RGB images. For classification, linear discriminant analysis combined with a k-nearest neighbor classification is used. First results show a reliable detection of minerals and positive signs for separability of tar and bitumen. This work is a foundation for developing a sensor-based sorting system for physical separation of tar contaminated samples in road rubble.
Author(s)
Bäcker, Paul
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Maier, Georg  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Gruna, Robin  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Längle, Thomas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
OCM 2023, Optical Characterization of Materials. Conference Proceedings  
Conference
International Conference on Optical Characterization of Materials 2023  
Open Access
File(s)
Download (1.3 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-1183
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Hyperspectral Imaging

  • Autoencoder

  • Polycyclic Aromatic Hydrocarbons

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024