• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Comparing the Impact of AI-Based versus Standard Load Profiles in ANN State Estimation Training in a Real Distribution Grid
 
  • Details
  • Full
Options
October 2024
Conference Paper
Title

Comparing the Impact of AI-Based versus Standard Load Profiles in ANN State Estimation Training in a Real Distribution Grid

Abstract
Due to the increasing amount of renewable energy sources and new consumers in low voltage power grids, there is an increasing need for grid monitoring. For this purpose, there exist state estimation methods that can predict the unknown grid state. Historically, standard load profiles were used as input, but they may be outdated and not adequately represent small consumer dynamics. To improve the estimator, a novel artificial intelligence-based generator of load time series is used to generate small consumer load profiles. An estimation method is then trained on both standard- and novel load profiles to estimate the overall state of a realistic grid. The results of both runs are then compared with real grid measurements to determine the estimation error in each case. First results show that the overall estimation error is lower with novel synthetic load profiles. In line loading estimates for example, 52 % of upper quartiles were below a 5 % error with standard profiles, compared to 68 % of upper quartiles with novel profiles. Two topological errors in the grid model could also be identified.
Author(s)
Jurczyk, Kristina
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Riedl, Leonie  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Dipp, Marcel
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Heck, Paul David
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Schäfermeier, Bastian
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Gerhards, Ben
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Gildehaus, Luka
Maksimovic Popkov, Nikita
Wende-von Berg, Sebastian  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Marten, Frank Bernhard
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Braun, Martin
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Mainwork
International Conference on Smart Energy Systems and Technologies, SEST 2024. Proceedings  
Project(s)
Redispatch3.0 - Demonstrationsprojekt Redispatch und Vermarktung nicht genutzter Flexibilitäten von Kleinstanlagen hinter intelligenten Messsystemen  
Funder
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
Conference
International Conference on Smart Energy Systems and Technologies 2024  
DOI
10.1109/SEST61601.2024.10693993
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Keyword(s)
  • Training

  • Estimation Error

  • Systematics

  • Measurement uncertainty

  • Training data

  • State estimation

  • Forecasting

  • Standards

  • Optimization

  • Load modeling

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024