• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Deep learning-based reconstruction of ultrasound images from raw channel data
 
  • Details
  • Full
Options
2020
Journal Article
Title

Deep learning-based reconstruction of ultrasound images from raw channel data

Abstract
Purpose We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions. Methods We propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data. Results The images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is 4.23±1.52 for the phantom images and 6.09±0.72 for the in vivo data. Conclusion The result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.
Author(s)
Strohm, H.
Rothlübbers, S.
Eickel, K.
Günther, M.
Journal
International journal of computer assisted radiology and surgery  
Open Access
DOI
10.1007/s11548-020-02197-w
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Digitale Medizin MEVIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024