• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. LESS-Net: Lightweight and Efficient Wideband Spectrum Segmentation Network
 
  • Details
  • Full
Options
2025
Conference Paper
Title

LESS-Net: Lightweight and Efficient Wideband Spectrum Segmentation Network

Abstract
Conventional deep learning-based spectrum sensing approaches rely on over-parameterized models for high accuracy, which poses many challenges when deploying them in real-time scenarios with limited resources. In this work, we present LESS-Net, a lightweight and efficient model built upon improvements to the standard UNet architecture. The proposed approach is based on semantic spectrum segmentation, which allows multiple signals to be detected, localized, and classified simultaneously. Experimental results show that LESS-Net achieves excellent performance in localizing and recognizing different signals in the time-frequency space with fewer parameters and computations, making it suitable for practical applications.
Author(s)
Sawant, Shrutika Shankar
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Medgyesy, Andreas
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Vagollari, Adela
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Goetz, Theresa
Technical University of Applied Sciences (OTH)
Raghunandan, Sahana
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
IEEE International Symposium on Dynamic Spectrum Access Networks, DySPAN 2025  
Conference
International Symposium on Dynamic Spectrum Access Networks 2025  
DOI
10.1109/DySPAN64764.2025.11115936
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • deep learning

  • lightweight networks

  • segmentation

  • spectrum sensing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024