• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Number of necessary training examples for Neural Networks with different number of trainable parameters
 
  • Details
  • Full
Options
2022
Journal Article
Title

Number of necessary training examples for Neural Networks with different number of trainable parameters

Abstract
In this work, the network complexity should be reduced with a concomitant reduction in the number of necessary training examples. The focus thus was on the dependence of proper evaluation metrics on the number of adjustable parameters of the considered deep neural network. The used data set encompassed Hematoxylin and Eosin (H&E) colored cell images provided by various clinics. We used a deep convolutional neural network to get the relation between a model's complexity, its concomitant set of parameters, and the size of the training sample necessary to achieve a certain classification accuracy. The complexity of the deep neural networks was reduced by pruning a certain amount of filters in the network. As expected, the unpruned neural network showed best performance. The network with the highest number of trainable parameter achieved, within the estimated standard error of the optimized cross-entropy loss, best results up to 30% pruning. Strongly pruned networks are highly viable and the classification accuracy declines quickly with decreasing number of training patterns. However, up to a pruning ratio of 40%, we found a comparable performance of pruned and unpruned deep convolutional neural networks (DCNN) and densely connected convolutional networks (DCCN).
Author(s)
Götz, Theresa  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Göb, Stephan
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Sawant, Shrutika Shankar
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Erick, Franciskus Xaverius
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Wittenberg, Thomas  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Schmidkonz, C.
Universitätsklinikum Erlangen
Tomé, A.M.
Instituto de Engenharia Electrónica e Telemática de Aveiro
Lang, E.W.
Universität Regensburg
Ramming, A.
Universitätsklinikum Erlangen
Journal
Journal of pathology informatics  
Open Access
DOI
10.1016/j.jpi.2022.100114
Additional link
Full text
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Cell segmentation

  • Deep neural networks

  • DNN complexity

  • Pruning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024