• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Informed Pre-Training for Critical Error Detection in English-German
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Towards Informed Pre-Training for Critical Error Detection in English-German

Abstract
This paper presents two data augmentation methods for pre-training, to find critical errors in machine translations. This includes an alignment approach used in traditional machine translation and an imitation method, mimicking the structure of the data. Both methods are adapted to a binary classification. Our approach achieves competitive results on the WMT'21 critical error detection (CED) dataset while only using 0.06% of datapoints in comparison to the first placement.
Author(s)
Pucknat, Lisa
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
LWDA 2022 Workshops: FGWM, FGKD, and FGDB. Proceedings  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Conference "Lernen, Wissen, Daten, Analysen" 2022  
Workshop on Knowledge Discovery, Data Mining and Machine Learning 2022  
Open Access
DOI
10.24406/publica-1332
File(s)
Pucknat_KDML-LWDA_2022_CRC_9736.pdf (222.98 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Critical Error Detection

  • Informed Machine Learning

  • Machine Translation

  • Quality Estimation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024