• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Feature selection on quantum computers
 
  • Details
  • Full
Options
February 20, 2023
Journal Article
Title

Feature selection on quantum computers

Abstract
In machine learning, fewer features reduce model complexity. Carefully assessing the influence of each input feature on the model quality is therefore a crucial preprocessing step. We propose a novel feature selection algorithm based on a quadratic unconstrained binary optimization (QUBO) problem, which allows to select a specified number of features based on their importance and redundancy. In contrast to iterative or greedy methods, our direct approach yields higher-quality solutions. QUBO problems are particularly interesting because they can be solved on quantum hardware. To evaluate our proposed algorithm, we conduct a series of numerical experiments using a classical computer, a quantum gate computer, and a quantum annealer. Our evaluation compares our method to a range of standard methods on various benchmark data sets. We observe competitive performance.
Author(s)
Mücke, Sascha
Heese, Raoul  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Müller, Sabine
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Wolter, Moritz  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Piatkowski, Nico  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Journal
Quantum machine intelligence  
Open Access
DOI
10.1007/s42484-023-00099-z
10.24406/publica-1500
File(s)
Muecke_Feature_Selection_on_QC_2023.pdf (1.65 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024