• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Geometric and chemical components of the giant piezoresistance in silicon nanowires
 
  • Details
  • Full
Options
2016
Journal Article
Titel

Geometric and chemical components of the giant piezoresistance in silicon nanowires

Abstract
A wide variety of apparently contradictory piezoresistance (PZR) behaviors have been reported in p-type silicon nanowires (SiNW), from the usual positive bulk effect to anomalous (negative) PZR and giant PZR. The origin of such a range of diverse phenomena is unclear, and consequently so too is the importance of a number of parameters including SiNW type (top down or bottom up), stress concentration, electrostatic field effects, or surface chemistry. Here, we observe all these PZR behaviors in a single set of nominally p-type, ⟨110⟩ oriented, top-down SiNWs at uniaxial tensile stresses up to 0.5 MPa. Longitudinal p-coefficients varying from −800 × 10−11 Pa−1 to 3000 × 10−11 Pa−1 are measured. Micro-Raman spectroscopy on chemically treated nanowires reveals that stress concentration is the principal source of giant PZR. The sign and an excess PZR similar in magnitude to the bulk effect are related to the chemical treatment of the SiNW.
Author(s)
McClarty, M.M.
Jegenyes, N.
Gaudet, M.
Toccafondi, C.
Ossikovski, R.
Vaurette, F.
Arscott, S.
Rowe, A.C.H.
Zeitschrift
Applied Physics Letters
Thumbnail Image
DOI
10.1063/1.4955403
Language
English
google-scholar
Fraunhofer-Institut für Photonische Mikrosysteme IPMS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022