• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. A FeFET In-Memory-Computing Core with Offset Cancellation for Mitigating Computational Errors
 
  • Details
  • Full
Options
October 6, 2023
Conference Paper
Title

A FeFET In-Memory-Computing Core with Offset Cancellation for Mitigating Computational Errors

Abstract
An analog In-Memory-Computing (IMC) core with offset cancellation is proposed in this work, where ferroelectric field-effect transistors (FeFET) are used as storage elements. Prior work indicates that FeFET IMC cores are able to achieve promising computation-and energy efficiency for accelerating multiply-accumulate (MAC) operations in artificial neural networks (ANN). However, it has been rarely discussed that IMC’s computational errors cause ANN’s inference accuracy loss. To address this problem, this work identifies the process variation of FeFETs and analog-to-digital converters (ADC) as the dominating error contributor to the computation accuracy based on numerical analysis. Inspired by the analysis result, this work suggests employing a dual-slope ADC with offset cancellation in the proposed IMC core to mitigate the FeFET-and ADC-induced computational errors. Because the offset cancellation needs to be performed only once as an initial step, the proposed method requires no extra computation step and energy consumption during computation. For lb-lb-(1-6b) MAC operations, the 2Snm prototype shows power efficiency of 2. S9TOPS/W to 15.4 TOPS/W at supply voltage of 1. 0V, and achieves 13.9 TOPS/W to 443 TOPS/W at an analog supply voltage of 0. 55V and a digital supply voltage of 0. 7V. The measurement shows an improved effective output resolution from 2 bits to 4 bits with the proposed offset cancellation, which reduces the average inference accuracy loss from 9.99% and 42.34% to 4.49% and 12.02% on the MNIST dataset under single-core and multi-core scenarios, respectively.
Author(s)
Zhang, Lei  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Xu, Pengcheng  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Borggreve, David  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Vanselow, Frank  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Brederlow, Ralf
Technische Universität München  
Mainwork
ESSCIRC 2023, IEEE 49th European Solid State Circuits Conference. Proceedings  
Project(s)
Technologie und Hardware für neuromorphe Computersysteme - TEMPO -; Teilvorhaben: Entwicklung von Hardware-Komponenten für Neuromorphic Computing  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Conference
European Solid State Circuits Conference 2023  
DOI
10.1109/ESSCIRC59616.2023.10268782
Language
English
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Keyword(s)
  • FeFET

  • in-memory-computing

  • non-volatile memory

  • offset cancellation

  • process variation

  • error suppression

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024