• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. microPREP: A new laser tool for high-volume sample preparation
 
  • Details
  • Full
Options
2016
Conference Paper
Title

microPREP: A new laser tool for high-volume sample preparation

Abstract
Over the past fifty year, lasers have perpetuated to find new, often groundbreaking applications in science and technology. The most important features of lasers are that photons are inherently free of elemental contamination, extremely high energy densities can be focused in very small areas and the laser beam can be precisely positioned using deflection mirrors. By reducing pulse lengths from a few nanoseconds down to the picosecond or femtosecond range, material's ablation is becoming increasingly "athermal", i.e. structure damage by local heating is reduced to well below a few microns. In view of these outstanding characteristics of lasers as tools for micromachining, it is very surprising that sample preparation for microstructure diagnostics so far hasn't made use of laser technology. microPREPTM, the all-new, patented laser-micromachining tool developed by 3D-Micromac is the first instrument to make fast, clean, and efficient laser ablation available for the preparation of samples for microstructure diagnostics. Exemplified for a sample to be investigated by transmission electron microscopy (TEM) and following a three-stage approach, a supporting basic structure is cut from the feedstock first. Second, the supported structure is thinned down to a few micron of residual thickness and third, the supported and thinned structure is polished using an ion broad beam. Illustrated by numerous examples, it is shown that this technology is ready to be applied on different areas of microstructure diagnostics and has very high potential for failure diagnostics.
Author(s)
Wagner, U.
Petsch, T.
Krause, M.
Höche, T.
Mainwork
Laser-Based Micro- and Nanoprocessing X  
Conference
Conference "Laser-Based Micro- and Nanoprocessing" 2016  
DOI
10.1117/12.2212444
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024