• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Influence of the acceptor on electrical perfomance and charge carrier transport in bulk heterojunction solar cells with HXS-1
 
  • Details
  • Full
Options
2014
Journal Article
Title

Influence of the acceptor on electrical perfomance and charge carrier transport in bulk heterojunction solar cells with HXS-1

Abstract
Enhancing the open-circuit voltage (VOC) is one way to increase the efficiency of organic solar cells. In cells with the polymer poly(2-(5-(5,6-bis(octyloxy)-4-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-7-yl)thiophen-2-yl)-9-octyl-9H-carbazole) (HXS-1) this can be achieved by replacing the acceptor [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) with indene-C60-bis-adduct (ICBA). The lowest unoccupied molecular orbital (LUMO) of ICBA is located at a higher energy, which leads to an increase of VOC from 0.86 to 1.05 V. However, the short-circuit current density (JSC) and fill factor (FF) are significantly lower in HXS-1:ICBA cells when compared with HXS-1:PC71BM cells, and thus the overall efficiency drops from almost 5% to 2.5%. Despite the smaller LUMO-LUMO offset between HXS-1 and ICBA, strong photoluminescence quenching as well as transient absorption studies indicate efficient and fast exciton dissociation in cells with either fullerene. The slope of the current-voltage characteristics of HXS-1:ICBA cells at short-circuit conditions and the lower dark current in forward direction suggest poor charge carrier transport. These findings were reproduced by a reduction of the electron mobility in electrical simulations. Furthermore, results from Suns-VOC measurements reveal a dramatically increased transport resistance in cells with ICBA when compared with devices using PC71BM. The observed effects could at least be partially due to a finer morphology in the HXS-1:ICBA layer, which is supported by AFM images.
Author(s)
Ahme, H.
Lee, M.
Im, C.
Würfel, Uli  
Journal
The journal of physical chemistry letters. Online journal  
DOI
10.1021/jp408705r
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Solarzellen - Entwicklung und Charakterisierung

  • Farbstoff

  • Organische und Neuartige Solarzellen

  • Alternative Photovoltaik-Technologien

  • Organische Solarzellen

  • Farbstoff- und Organische Solarzellen

  • Bulk Heterojunction Solar Cell

  • Carrier Transport

  • Absorption

  • Dissociation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024