• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. SynthASpoof: Developing Face Presentation Attack Detection Based on Privacy-friendly Synthetic Data
 
  • Details
  • Full
Options
2023
Conference Paper
Title

SynthASpoof: Developing Face Presentation Attack Detection Based on Privacy-friendly Synthetic Data

Abstract
Recently, significant progress has been made in face presentation attack detection (PAD), which aims to secure face recognition systems against presentation attacks, owing to the availability of several face PAD datasets. However, all available datasets are based on privacy and legallysensitive authentic biometric data with a limited number of subjects. To target these legal and technical challenges, this work presents the first synthetic-based face PAD dataset,
named SynthASpoof, as a large-scale PAD development dataset. The bona fide samples in SynthASpoof are synthetically generated and the attack samples are collected by presenting such synthetic data to capture systems in a real attack scenario. The experimental results demonstrate the feasibility of using SynthASpoof for the development of face PAD. Moreover, we boost the performance of such a solution by incorporating the domain generalization tool
MixStyle into the PAD solutions. Additionally, we showed the viability of using synthetic data as a supplement to enrich the diversity of limited authentic training data and consistently enhance PAD performances. The SynthASpoof dataset, containing 25,000 bona fide and 78,800 attack samples, the implementation, and the pre-trained weights are made publicly available.
Author(s)
Fang, Meiling  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023. Proceedings  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Conference
Conference on Computer Vision and Pattern Recognition Workshops 2023  
Open Access
DOI
10.1109/CVPRW59228.2023.00113
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • LTA: Generation, capture, processing, and output of images and 3D models

  • Face recognition

  • Biometrics

  • Deep learning

  • Image generation

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024