• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Leveraging Edge Computing and Differential Privacy to Securely Enable Industrial Cloud Collaboration Along the Value Chain
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Leveraging Edge Computing and Differential Privacy to Securely Enable Industrial Cloud Collaboration Along the Value Chain

Abstract
Big data continues to grow in the manufacturing domain due to increasing interconnectivity on the shop floor in the course of the fourth industrial revolution. The optimization of machines based on either real-time or historical machine data provides benefits to both machine producers and operators. In order to be able to make use of these opportunities, it is necessary to access the machine data, which can include sensitive information such as intellectual property. Employing the use case of machine tools, this paper presents a solution enabling industrial data sharing and cloud collaboration while protecting sensitive information. It employs the edge computing paradigm to apply differential privacy to machine data in order to protect sensitive information and simultaneously allow machine producers to perform the necessary calculations and analyses using this data.
Author(s)
Giehl, Alexander  
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Heinl, Michael  orcid-logo
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Busch, Maximilian
Technical University of Munich, Institute for Machine Tools and Industrial Management (iwb)
Mainwork
IEEE 17th International Conference on Automation Science and Engineering, CASE 2021  
Project(s)
Anonymization4Optimization (A4O)
Funder
Bundesministerium für Wirtschaft und Energie BMWi (Deutschland)  
Conference
International Conference on Automation Science and Engineering (CASE) 2021  
Open Access
File(s)
Download (814.22 KB)
Rights
Use according to copyright law
DOI
10.24406/publica-r-412539
10.1109/CASE49439.2021.9551656
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Keyword(s)
  • anonymization

  • Chatter Analysis

  • edge computing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024