• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Optimization-Based Network Identification for Thermal Transient Measurements
 
  • Details
  • Full
Options
2021
Journal Article
Title

Optimization-Based Network Identification for Thermal Transient Measurements

Abstract
Network identification by deconvolution is a proven method for determining the thermal structure function of a given device. The method allows to derive the thermal capacitances as well as the resistances of a one-dimensional thermal path from the thermal step response of the device. However, the results of this method are significantly affected by noise in the measured data, which is unavoidable to a certain extent. In this paper, a post-processing procedure for network identification from thermal transient measurements is presented. This so-called optimization-based network identification provides a much more accurate and robust result compared to approaches using Fourier or Bayesian deconvolution in combination with Foster-to-Cauer transformation. The thermal structure function obtained from network identification by deconvolution is improved by repeatedly solving the inverse problem in a multi-dimensional optimization process. The result is a non-diverging thermal structure function, which agrees well with the measured thermal impedance. In addition, the associated time constant spectrum can be calculated very accurately. This work shows the potential of inverse optimization approaches for network identification.
Author(s)
Ziegeler, N.J.
Nolte, P.W.
Schweizer, S.
Journal
Energies  
Open Access
DOI
10.3390/en14227648
Additional link
Full text
Language
English
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024