• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Laser doping for high efficiency silicon solar cells
 
  • Details
  • Full
Options
2012
Conference Paper
Title

Laser doping for high efficiency silicon solar cells

Abstract
Selective laser doping is a versatile tool for the local adaption of doping profiles in a silicon substrate. By adjusting the laser fluence as well as the pulse width the maximum melt depth in the silicon can be controlled. Longer pulses lead to lower temperatures in the material and can help to enlarge the process window as ablation sets in at higher fluencies. For the fabrication of highly efficient silicon solar cells, laser doping can be used for efficiency improvement and process simplification. In passivated emitter and rear cells (PERC), selective laser doping can be used for selective emitter formation. Employing such a process, an efficiency boost of ?= 0.4%abs was observed on commercial Cz-Si material. Laser doping was also used for process simplification for the fabrication of locally doped point contacts at the rear of a solar cell. A simple approach employing a doped passivation layer and a laser doping process allows for efficiencies beyond 22% on high q uality n-type silicon.
Author(s)
Jäger, Ulrich
Wolf, Andreas  
Steinhauser, Bernd  
Benick, Jan  
Nekarda, Jan  
Preu, Ralf  
Mainwork
Laser material processing for solar energy  
Conference
Conference "Laser Material Processing for Solar Energy" 2012  
DOI
10.1117/12.929576
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024