• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Evaluating the Skill of Seasonal Wind Energy Forecasts in Germany
 
  • Details
  • Full
Options
Title
Evaluating the Skill of Seasonal Wind Energy Forecasts in Germany
Author(s)
Tyagi, Abhinav
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Pauscher, Lukas  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Happ, Alina
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Arsalan, Muhammad
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Braun, Axel  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Braun, Martin
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Siefert, Malte  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Wandel, Jan
Paxian, Andreas
Publication Date
May 27, 2025
Page Count
7 S.
Mainwork
21st International Conference on the European Energy Market, EEM 2025  
ISBN
DOI
10.1109/EEM64765.2025.11050088
10.24406/publica-4989
Conference
International Conference on the European Energy Market 2025  
Project(s)
Longcast
Acronym
EEM
Language
English
Publication Type
Conference Paper
Handle
https://publica.fraunhofer.de/handle/publica/490172
https://doi.org/10.24406/publica-4989
Abstract
Seasonal renewable wind energy forecasts predict energy production, typically up to six months, with possible applications in supporting energy trading and optimizing operations and reducing grid risks. This study specifically develops the first seasonal energy forecasts tailored for Germany by applying a wind power model to seasonal wind speed forecasts from the German Climate Forecast System Version 2.1 (GCFS2.1). The hindcasts for years 1990-2000, with reanalysis data from ERA5 used as a baseline, are used for skill evaluation. The verification with three complementary metrics, probabilistic and deterministic, reveal that, despite the overall low skill and limited statistical significance, there might exist a few ‘opportunity windows‘ where the seasonal forecasts could be used as an additional input in a decision-making process. Concretely, mid-summer (June-August) and early winter (November-January) seasons in south Germany show a slight better performance, which may be connected to the predictability of large-scale circulations in these regions and seasons. The analysis also highlights the need for further calibration techniques that might enhance the forecast skills.
Keyword(s)
Power curve

; 

Ensemble methods

; 

Seasonal energy forecasting

; 

Wind energy conversion

; 

Wind energy forecasting
Institute
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024