• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Combined in situ X-ray computed tomography and acoustic emission analysis for composite characterization - A feasibility study
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Combined in situ X-ray computed tomography and acoustic emission analysis for composite characterization - A feasibility study

Abstract
Fiber reinforced plastics show a wide range of different damage mechanisms such as matrix cracking, fiber breakage and interface failure. These can be observed in damaged specimens by means of volumetric images acquired by computed tomography (CT). As each failure mechanism causes a characteristic acoustic emission (AE) signal, AE analysis is a promising tool to identify damage mechanisms and offers the advantage that a real-time observation of the damage evolution during the testing period is possible. For a correlation of damage mechanisms and AE events, AE analysis was combined with in- situ CT measurements. This combined approach was validated by means of a 3-point-bending test on a discontinuous glass fiber reinforced sheet molding compound (GF-SMC) in which AE signals were acquired during loading using two high frequency piezoelectric sensors. At times of increasing AE activity, the test was interrupted in order to carry out a CT-scan of the specimen under load. AE events could subsequently be linked with the damage mechanisms observed in the CT-scans at different stages of damage to identify signal features that are characteristic for a certain mechanism. The sources of the signals could be localized and were in line with the actual location of damage.
Author(s)
Bartkowiak, M.
Schoettl, L.
Elsner, P.
Weidenmann, K.A.
Mainwork
22nd Symposium on Composites 2019  
Conference
Symposium on Composites 2019  
DOI
10.4028/www.scientific.net/KEM.809.604
Language
English
Fraunhofer-Institut für Chemische Technologie ICT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024