• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Utilizing multispectral imaging for improved weed and crop detection
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Utilizing multispectral imaging for improved weed and crop detection

Abstract
Conventional agriculture relies heavily on herbicides for weed control. Smart farming, particularly through the
use of mechanical weed control systems, has the potential to reduce the herbicide usage and the associated
negative impact on our environment. The growing accessibility of multispectral cameras in recent times poses
the question if their added expenses justify the potential advantages they offer. In this study we compare the
weed and crop detection performance between RGB and multispectral VIS-NIR imaging data. Therefore, we
created and annotated a multispectral instance segmentation dataset for sugar beet crop and weed detection.
We trained Mask-RCNN models on the RGB images and on images composed of different vegetation indices
calculated from the multispectral data. The outcomes are thoroughly analysed and compared across various
scenarios. Our findings indicate that the use of vegetation indices can significantly improve the weed detection
performance in many situations.
Author(s)
Fischer, Benedikt  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Gauweiler, Pascal
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Gruna, Robin  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
Optical Instrument Science, Technology, and Applications III  
Conference
Conference "Optical Instrument Science, Technology, and Applications" 2024  
DOI
10.1117/12.3023597
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Multispectral Imaging

  • Precision Agriculture

  • Machine Learning

  • Object Detection

  • Weed Control

  • Vegetation Indices

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024