• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving Natural Language Inference in Arabic Using Transformer Models and Linguistically Informed Pre-Training
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Improving Natural Language Inference in Arabic Using Transformer Models and Linguistically Informed Pre-Training

Abstract
This paper addresses the classification of Arabic text data in the field of Natural Language Processing (NLP), with a particular focus on Natural Language Inference (NLI) and Contradiction Detection (CD). Arabic is considered a resource-poor language, meaning that there are few data sets available, which leads to limited availability of NLP methods. To overcome this limitation, we create a dedicated data set from publicly available resources. Subsequently, transformer-based machine learning models are being trained and evaluated. We find that a language-specific model (AraBERT) performs competitively with state-of-the-art multilingual approaches, when we apply linguistically informed pretraining methods such as Named Entity Recognition (NER). To our knowledge, this is the first large-scale evaluation for this task in Arabic, as well as the first application of multitask pretraining in this context.
Author(s)
Saad Al Deen, Mohammad Majd
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hees, Jörn
Hochschule Bonn-Rhein-Sieg  
Abdou, Bouthaina Soulef
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE Symposium Series on Computational Intelligence, SSCI 2023  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Symposium Series on Computational Intelligence 2023  
DOI
10.1109/SSCI52147.2023.10371891
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Computational modeling

  • Machine learning

  • Transformers

  • Natural language processing

  • Natural language processing

  • Computational intelligence

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024