• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. AI-Based Engineering and Production Drawing Information Extraction
 
  • Details
  • Full
Options
2023
Conference Paper
Title

AI-Based Engineering and Production Drawing Information Extraction

Abstract
The production of small batches to single parts has been increasing for many years and it burdens manufacturers with higher cost pressure. A significant proportion of the costs and processing time arise from indirect efforts such as understanding the manufacturing features of engineering drawings and the process planning based on the features. For this reason, the goal is to automate these indirect efforts. The basis for the process planning is information defined in the design department. The state of the art for information transfer between design and work preparation is the use of digital models enriched with additional information (e.g. STEP AP242). Until today, however, the use of 2D manufacturing drawings is widespread. In addition, a lot of knowledge is stored in old, already manufactured components that are only documented in 2D drawings. This paper provides an AI(Artificial Intelligence)-based methodology for extracting information from the 2D engineering and manufacturing drawings. Hereby, it combines and compiles object detection and text recognition methods to interpret the document systematically. Recognition rates for 2D drawings up to 70% are realized.
Author(s)
Haar, Christoph  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Kim, Hangbeom
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Koberg, Lukas
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus. Vol.1  
Conference
International Conference on Flexible Automation and Intelligent Manufacturing 2022  
Open Access
DOI
10.1007/978-3-031-18326-3_36
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Drawing

  • Image recognition

  • Manufacturing drawing

  • Process planning

  • Text recognition

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024