• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Iterative Gaussian Process Model Predictive Control with Application to Physiological Control Systems
 
  • Details
  • Full
Options
December 2021
Conference Paper
Title

Iterative Gaussian Process Model Predictive Control with Application to Physiological Control Systems

Abstract
Model predictive control (MPC) is becoming one of the leading modern control approaches applied to physiological control systems. However, intra- and interpatient variability usually requires an adaptation of the model to each individual patient or otherwise deeming the controller too conservative. The incorporation of learning in model predictive control is subject to ongoing intensive research to provide tractable and safe implementation in practice. Gaussian processes (GPs) among other learning approaches have been proposed for learning uncertain or unknown system dynamics as well as time varying disturbances. However, the naïve incorporation of GPs into MPC, commonly results in complex and nonlinear optimization problems. In this paper, we propose a practical stochastic MPC implementation, that utilizes estimates of the parameter uncertainties and nonlinearities of the system as well as external additive disturbances. By using a linear nominal model augmented with two separate GPs, nonlinearities depending on the state and input as well as temporal disturbances can be considered efficiently in the MPC framework. An iterative optimization scheme is introduced using quadratic programming to circumvent solving a stochastic nonlinear program. The applicability of the proposed approach is demonstrated on a pressure controlled mechanical ventilation problem.
Author(s)
Männel, Georg
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Graßhoff, Jan  
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Rostalski, Philipp  
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Abbas, Hossam S.
Mainwork
60th IEEE Conference on Decision and Control, CDC 2021  
Project(s)
Angewandte Modell-prädiktive Regelung für Nichtlineare/Zeit-veränderliche Systeme unter Verwendung von Linear-Parameter Veränderlicher Modelle
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Conference
Conference on Decision and Control 2021  
DOI
10.1109/CDC45484.2021.9683119
Language
English
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024