• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Choice of the parameters in a primal-dual algorithm for Bregman iterated variational regularization
 
  • Details
  • Full
Options
2021
Journal Article
Title

Choice of the parameters in a primal-dual algorithm for Bregman iterated variational regularization

Abstract
Focus of this work is solving a non-smooth constraint minimization problem by a primal-dual splitting algorithm involving proximity operators. The problem is penalized by the Bregman divergence associated with the non-smooth total variation (TV) functional. We analyze two aspects: Firstly, the convergence of the regularized solution of the minimization problem to the minimum norm solution. Second, the convergence of the iteratively regularized minimizer to the minimum norm solution by a primal-dual algorithm. For both aspects, we use the assumption of a variational source condition (VSC). This work emphasizes the impact of the choice of the parameters in stabilization of a primal-dual algorithm. Rates of convergence are obtained in terms of some concave, positive definite index function. The algorithm is applied to a simple two-dimensional image processing problem. Sufficient error analysis profiles are provided based on the size of the forward operator and the noise level in the measurement.
Author(s)
Altuntac, E.
Journal
Numerical Algorithms  
DOI
10.1007/s11075-020-00909-6
Language
English
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024